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Abstract
The interaction between kink and radiation in nonlinear one-dimensional real
scalar field is investigated. The process of discrete vibrational mode excitation
in φ4 model is considered. The role of these oscillations in the creation of
kink and antikink is discussed. Numerical results are presented as well as some
attempts of analytical explanations. An intriguing fractal structure in parameter
space dividing regions with and without creation is also presented.

PACS numbers: 02.30.Jr, 02.60.Cb, 03.50.Kk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Topological defects are usually almost compact (with only some exponential tails), static
solutions with finite energy of partial differential equations whose properties are defined
by field values at infinity. The simplest examples of topological defects are one-dimensional
kinks (φ4 or sine-Gordon equation). Less trivial examples (vortices, domain walls, monopoles,
etc) manifest themselves in various branches of physics [1, 2], such as particle physics [3],
condensed matter physics, cosmology [4, 5] and much more.

Because of their stability and localized energy density some topological defects have
similar properties as particles (e.g., kinks in 1+1 dimensions or monopoles in 3+1 dimensions).
They can be created or annihilated as ordinary particles. They can also interact with each
other, with radiation or external force. Reference [6] brings a very nice example of topological
defects accelerating under a constant external force.

However, topological defects reveal some properties which make them very different
from particles. In our previous paper [7], we have presented an unexpected behaviour when
the kink in φ4 was exposed to monochromatic radiation of scalar field coming from one
direction. The nonlinear character of this interaction resulted in ‘negative radiation pressure’.
The kink, instead of being pushed by radiation, was in fact being pulled towards the source of
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this radiation. Similar feature reveals the second most often used example, the sine-Gordon
soliton.

Another peculiarity of topological defects occurred in a two kink collision process in φ4

theory [8] during which the kinks could be scattered back or annihilated. Let us stress out that
similar process in sine-Gordon equation, because of its integrability, is less interesting. If the
S-G solitons have enough energy they go through each other with nothing but a phase shift.
When the energy is below some threshold the solution describes a bound state (breather) which
is a perfectly periodic solution. φ4 has much more interesting structure of solutions. During
collision the kinks loose some of their initial energy on behalf of radiation and when the loss is
small the kinks reflect from each other. When the loss is large they glue to each other forming
a bound state (so-called oscillon [9, 10]). The bound state also radiates and finally vanishes.
An extraordinary thing about this process is that there exists no real threshold. The regions in
phase space for one or the other scenario mix and form a fractal similar to a Cantor’s set.

This is not an isolated example. Goodman et al [11] bring a different example when a
sine-Gordon soliton interacts with an oscillating impurity mode. They also observed a fractal
structure.

We found yet another example of fractal structure but in a quite different process. The φ4

soliton possesses an internal degree of freedom—an oscillational mode (in [8] authors claim it
is responsible for a peculiar behaviour of kinks during collision). When that mode is excited,
it oscillates with a certain frequency. In linear approximation, the mode oscillates infinitely
long with constant amplitude. When one includes nonlinear correction, one finds the mode
couples to scattering spectrum and radiates reducing its amplitude and finally vanishes (similar
process but in much more complicated case of ’t Hooft–Polyakov monopole was discussed in
[12]). But when the initial amplitude is large enough so that its energy is just a little above a
mass of two kinks, a kink and antikink are produced.

In the present work, we investigate an opposite process. We light radiation far away from
the kink from both directions so that the kink would stand still. The radiation excites the
oscillational mode and if the radiation amplitude and frequency is suitable the oscillational
mode breaks up to kink and antikink. Of course, if radiation is large enough the kinks can
be created even from vacuum, but because the oscillational mode gathers the energy our
process seems to be much more efficient. One surprising result we have found is that in a
plane radiation amplitude versus radiation frequency the border separating solutions with and
without creation is also a fractal. We claim that the nonlinear coupling between the vibrational
mode and radiation is responsible for the structure.

Our paper is organized as follows. In the following section, we give an introduction to
the model discussed. We recall a spectral structure of linearization around the kink. The next
section is devoted to excitation of the oscillational mode. We present our numerical results
and attempts of theoretical explanation. We present a simple model reproducing qualitative
results of the full model. Although on a precise level there are some discrepancies, the general
structure of solutions remains similar. The next section is a brief description of the numerical
method used. The last section is as usual conclusions and discussion.

We have also encountered a very interesting question of how one can simplify and reduce
a system from infinite number of degrees of freedom to only few.

2. The model

Let us consider one-dimensional real scalar field obeying the equation in the form

φ̈ − φ′′ + U ′(φ) = 0, (1)
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where U(φ) is a potential with at least two equal minima (vacua) φv (without loss of generality
we can assume that U(φv) = 0) so that in these theories there exist static soliton solutions φs

described by the equation

φs(x) : x − xo = ±
∫ φv2

φv1

dφ√
2U(φ)

. (2)

In this section, we will discuss the two most known models, i.e., φ4
(
U(φ) = 1

2 (φ2 − 1)2
)

and
sine-Gordon (U(φ) = 1 − cos(φ)) equations. In these theories, the static soliton solutions
have the form {

φs(x) = ±tanh(x − xo) for φ4

φs(x) = ±arctan(e−(x−x0)) for S-G.
(3)

Because of the translational invariance we can substitute x0 = 0.
Let us add some small perturbation to the static kink solution (φ = φs + ξ). If the potential
can be expanded in a Taylor’ series (one can do so for many systems with an exception of
certain compactons [13]):

U ′(φ) = U ′(φs + ξ) = U ′(φs) + U ′′(φs)ξ + N(ξ, φs) (4)

where N(ξ, φs) is a nonlinear part in ξ (Nφ4 = 6φsξ
2 + 2ξ 3). We can write the equation

for ξ as

ξ̈ − ξ ′′ + V (x)ξ + N(ξ, x) ≡ ξ̈ + L̂ξ + N(ξ, x) = 0, (5)

where

V (x) = U ′′(φs(x)) =




1 − 2

cosh2 x
for S-G

4 − 6

cosh2 x
for φ4.

(6)

We substitute ξ(t, x) = exp(iωt)ηk(x) and find the eigenvalues and the eigenfunctions of the
operator L̂ = −d2/dx2 + V (x). We can divide the spectra into the following three groups:

(i) translational zero modes: ηt = φ′
s : φs(x + δx) ≈ φs(x) + δxφ′

s(x), ωt = 0,
(ii) discrete oscillational modes (there is none for S-G and only one for φ4 but in general there

can be any finite number):

η
(φ4)

d (x) = sinh x

cosh2 x
, ωd =

√
3,

(iii) scattering modes:

ηk(x) =
{

eikx(ik − tanh x) for S-G

eikx(3 tanh2 x − 1 − k2 − 3ik tanh x) for φ4,

where k2 = ω2 − m2,m = 2 for φ4 and m = 1 for S-G.

It is very significant that scattering modes in these models have no reflection part (this is why
the negative radiation pressure is possible [7]). This is not a general feature. In fact it is quite
rare, but spectra for V (x) given in a form

V (x) = −N(N + 1)

cosh2 x

are reflectionless for all integer N. There are exactly N bounded modes. One of them is a
translational mode and the rest of them are oscillational [14].
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The existence of the oscillational mode in the φ4 theory is responsible for its
nonintegrability. During collisions, this mode is excited and takes some of the initial energy.
Then the energy, due to the nonlinearities, is transferred to radiation modes.

Numerical results show that the radiation coming from infinity and hitting the kink can
cause the creation of the pair kink and antikink. This process is much easier for φ4. Even small
amplitudes can force the process. In sine-Gordon’s case, the process occurs for amplitudes
compared to the amplitudes when the creation can occur even far away from kink in pure
radiation. The explanation is quite simple. In φ4, there exists an oscillation mode which can
be excited by the radiation. Manton [15] investigated the creation of kink and antikink caused
only by a discrete mode. When the energy contained in this mode was a little above than the
energy of two kinks, a pair of kink and antikink was created and two kinks were radiated to
infinity in opposite directions and antikink remained. When the energy was not large enough,
the discrete mode oscillated with a decreasing amplitude and the energy was radiated to infinity
because of the coupling to the scattering modes. In the following section, we will discuss an
opposite process. Radiation coming from infinity will couple to the oscillating mode.

3. Excitation of the oscillating mode and the creation process in φ4 model

3.1. Numerical results

We used two different sets of initial and boundary conditions to determine the coupling
between radiation and the oscillating mode. In both cases we considered only antisymmetric
problems, we evaluated our system only on one-half of the x-axis and posed the boundary
condition φ(t, 0) = 0. We could do so because the symmetrical radiation does not couple with
an oscillational mode and therefore gives no contribution. The symmetrical radiation couples
however with a translational mode and the kink as a whole would start moving and would be
a difficult object to study.

In the first case, we had initial conditions φ(0, x) = φs(x). The boundary conditions
were φ̇(0, x) = 0 and φ(t, L) = 1 + 1

2A sin ωt (where L was large in comparison to the size of
the kink, usually L = 200). We use 1

2 because when the waves come from both sides of
the kink, they add and produce a standing wave with twice as big amplitude. Because of the
condition φ(t, 0) = 0 and the symmetry of the equation φ → −φ, x → −x, we actually
studied the system with boundary conditions φ(t,±L) = 1 ± 1

2A sin ωt . These conditions
describe the kink in radiation coming from both sides from very far away. In order to measure
the excitation of the discrete mode, we calculated the value (a projection on a discrete mode)

Ad(t) =
∫ ∞
−∞ dx ηd(x)[φ(t, x) − φs(x)]∫ ∞

−∞ dx η2
d(x)

. (7)

Because the radiation is orthogonal to ηd there is no contribution to Ad(t) from any other
modes (at least in linear approximation). We measured Ad for different ω and A.

In figures 1–3, we have sketched three examples of Ad versus time for ω = 3.5 and for A

equals 0.2, 0.3 and 0.5.
For all figures, we can see that the reaction of the oscillating mode is retarded by about 240.
Because the radiation is ‘switched on’ at x = L it needs time t0 = ∂k/∂ωL = ωL/k ≈ 243
to get to the kink.

If the amplitude is small (figure 1), Ad oscillates with eigenfrequency ωd . These
oscillations are modulated by another frequency. As we will show in the following section
this modulating frequency is ωm = ω − 2ωd (figure 4). In our example, ωm = 0.0359 and the
period is 175 so there is a very good agreement.
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Figure 1. The excitation of the discrete mode for A = 0.2 and ω = 3.5.
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Figure 2. The excitation of the discrete mode for A = 0.3 and ω = 3.5.
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Figure 3. The excitation of the discrete mode for A = 0.5 and ω = 3.5. One can see the creation
of kink–antikink pairs for t ≈ 500, t ≈ 560 and t ≈ 590.
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Figure 4. Fourier transform of Ad for ω = 3.5 and A = 0.2. One can see four separated peaks for
ω = √

3 ≈ 1.73, 3.5, 7 and 3.5 − √
3 ≈ 1.76.

Figure 5. Minima of Ad versus frequency ω and amplitude A of radiation coming from L = 200.
Dark spots Ad < − 3π

2 represent creation process.

If the amplitude is larger the modulations are with higher frequency and the oscillations
decay. This decay can be explained because as Manton showed in [15] the oscillating mode
couples to the scattering modes and radiates its energy (see also [16, 17]).

The next figure (figure 3) is the most interesting. First, we can see some chaotic oscillations
and then around t = 500 Ad suddenly goes to about −1.5π and then oscillates around that
level, and then goes back to 0 (around t = 560). If the amplitude of Ad is large enough, a pair
of kink and antikink can be created and radiated in both directions, but the place of a kink in
the middle is taken by an antikink. When we substitute φ(x, t) = −φs(x) into (7) we obtain
that Ad = − 3π

2 . Figure 5 presents the minima of Ad(t) as a dependence upon frequency
ω and amplitude A of incoming radiation. When Ad is less than − 3π

2 , a creation occurred
(dark spots). One can see that the border between creation and small oscillations is very
complicated, probably fractal. The resolution is not good enough to prove this proposition
but figure 6 may justify our hypothesis. We present the dependence ln nb versus ln 1/l where
nb is a number of boxes containing the boundary and l is the relative size of the boxes. The
slope of the fitted line should give a fractal dimension dc. In this case, dc = 1.69 ± 0.02 and
that would justify that the border is fractal. Of course, proving numerically that something is
a fractal is very difficult and in our case is almost impossible.
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Figure 6. Dependence ln nb upon ln 1/l. The slope of the fitted line is 1.69 ± 0.02.

Although the case described above has a nice physical interpretation, because we switch
on the light in one particular moment, it is very difficult to explain it in details using a simplified
method presented in the next section. The reason is that the simplified equations for Ad are
derived for monochromatic wave coming from both sides. When we consider the boundary
conditions described in the beginning of the present section, we find that the radiation has a
form of a very wide wavelet. Despite nonlinearities in the equation, the wavelet is always a
superposition of many monochromatic waves. Although we can assume that after a long time
we have almost a single frequency standing wave there is still a problem of initial conditions
for Ad(t0). We found that the evolution of Ad(t) highly depends on the initial conditions. We
cannot tell whether Ad would oscillate or jump to − 3π

2 (and force the creation of soliton pairs)
if the initial conditions are not defined with enough accuracy.

It is much easier to consider the Cauchy problem with conditions ξ(t = 0, x) = Ark(t =
0, x), where rk(t, x) is a real combination of scattering modes η±k in a form of a standing
wave rk(t, x) = hk(x) cos ωt , where

hk(x) = (3 tanh2 x − 1 − k2) sin kx − 3k tanh x cos kx√
(k2 + 4)(k2 + 1)

. (8)

The denominator was introduced just for convenience so that the amplitude of the wave far
away from the kink would be 1. Basically, the structure of the solutions looks the same but
for different parameters A and the oscillations begin for t = 0. We have plotted an analogical
figure to figure 5 (figure 7). We can see that the border between the two types of solutions
(with a creation (dark spots) and without) also seems to be fractal (figure 8).

If we make a similar figure using the longer evolution, the border would be shifted in
the direction of smaller A for obvious reasons. We tried to evolve our system as long as the
border does not change significantly with longer time. Unfortunately, this procedure was very
difficult to apply and we cannot be certain weather the border presented in figure 7 is a true
limit, but we think it is a quite good approximation nevertheless.

3.2. Theory

Let us now try to explain the fractal structure using more analytical approach. In the present
section, we will construct a simplified equation for the evolution of Ad . Our goal is not to
give a precise nor formal analytical calculation but rather to point out the important features
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Figure 7. Minima of Ad versus frequency ω and amplitude A of radiation in the case of a standing
wave.
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Figure 8. Dependence ln nb upon ln 1/l for the second case. The slope of the fitted line is
1.76 ± 0.02.

of the system which are responsible for the formation of the fractal structure described in the
previous section. Let us consider a simplified field equation for ξ in the φ4 model (5):

ξ̈ + L̂ξ + 6φsξ
2 = 0. (9)

We have neglected only the cubic term.
Let us decompose ξ into the sum of given radiation, excitation of the discrete mode and

some orthogonal field η (for completeness):

ξ(t, x) = Ark(t, x) + Ad(t)ηd(x) + η(t, x). (10)

If amplitude of the radiation A is small and there are no free oscillations of Ad nor η, it is
consistent to assume that Ad and η are both of order O(A2). After substitution (10) into (9),
we obtain (in the second order in A)(
Äd + ω2

dAd

)
ηd + η̈ + L̂η + 6φs

(
1
2A2h2

k(1 + cos 2ωt) + A2
dη

2
d + η2

+ 2AdηdAhk cos ωt + 2Adηηd + 2Ahkη cos ωt
) = 0. (11)

The first correction to Ad originated from the interaction between Ad and η would be of
order O(A4) and we will neglect this term. Since η is orthogonal to ηd , we can multiply both
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sides of this equation by ηd and integrate (similar procedure was applied in [6]). The projected
equation yields

Äd + ω2
dAd + A2α(k)(1 + cos 2ωt) + β(k)AAd cos ωt + γA2

d = 0, (12)

where

α(k) = 3

∫ ∞
−∞ dx φs(x)h2

k(x)ηd(x)∫ ∞
−∞ dx η2

d(x)
, (13)

β(k) = 12

∫ ∞
−∞ dx φs(x)hk(x)η2

d(x)∫ ∞
−∞ dx η2

d(x)
, (14)

γ = 6

∫ ∞
−∞ dx φs(x)η3

d(x)∫ ∞
−∞ dx η2

d(x)
= 9π

16
. (15)

The first two integrals can also be calculated analytically:

α(k) = 9π

64N2
(8k4 + 34k2 + 17)

(
1 − 1

cosh kπ

)
, (16)

β(k) = 3πk2 k4 + 2k2 − 8

8N sinh kπ
2

, (17)

where N =
√

(k2 + 4)(k2 + 1).
Equation (12) is very similar to Mathieu’s equation but with extra driving force and

nonlinear term. The equation describes the evolution of Ad but during its derivation we used
many simplifications. The oscillating mode couples to the scattering modes and is a source of
radiation itself [7, 15]. This radiation carries away the energy from the discrete mode causing
the mode to decay. Although we have predicted the loss of energy due to the radiation in [7]
but the present case is more complicated. The nonlinear part in equation (11) contains sources
in the form of rkAdηd and we do not know how much energy is taken from the oscillational
mode and how much from original radiation. Finally, we do not know how this loss would
decrease amplitudes of the nonharmonic oscillations of Ad . Moreover, the damping term plays
less important role in the formation of the fractal structure. This is why we did not add the
damping term.

Although equation (12) is nonlinear and in order to find the solutions we need to use
numerical methods (which will be presented further in this section), one can find some
features of the solution using the perturbation approach. Let us find a solution of the equation
in a form (we do not wish to have homogeneous oscillations of the discrete mode at this point
so that Ad could be of order O(A2))

Ad = A
(2)
d A2 + A

(3)
d A3 + A

(4)
d A4 + · · ·

with a condition that A is very small. The substitution into (12) gives (in order O(A2))

Ä
(2)
d + ω2

dA
(2)
d + α(1 + cos 2ωt) = 0. (18)

This equation is a simple forced harmonic oscillator equation and we can solve it very easily:

A
(2)
d (t) = − α

ω2
d

+
α

4ω2 − ω2
d

cos 2ωt + B(2) cos(ωdt + δ), (19)

where B(2) is a homogeneous oscillation amplitude (now we can add this term and the order
of the solution agrees). The first term −α

/
ω2

d describes the level of oscillation which is below
0 (figures 1 and 2).
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Now we can also apply initial conditions such as Ad(0) = 0, Ȧd(0) = 0 to calculate B(2)

and δ. Instead of that let us assume, for simplicity, δ = 0. The next order equation has the
form

Ä
(3)
d + ω2

dA
(3)
d + βA

(2)
d cos ωt = 0, (20)

and solve it as well. The inhomogeneous term is equal to

βA
(2)
d cos ωt = αβ

(
−cos ωt

ω2
d

+
cos 3ωt + cos ωt

2
(
4ω2 − ω2

d

)
)

+
1

2
B(2)β(cos(ωd + ω)t + cos(ω − ωd)t).

(21)

The last term oscillates with a frequency ω − ωd . This frequency is visible in the power
spectrum in figure 4. In our example, the frequency ω − ωd ≈ 1.76 is not very different from
ωd which is an eigenfrequency of the internal mode. It is not a surprise that this term gives
particularly large contribution to the evolution of Ad since it is very close to the resonance
frequency. In figure 4, the amplitude at this frequency is the second dominating frequency.
When two oscillations with similar frequencies add, one can observe modulation with a
frequency which is a difference of these frequencies (in our case it is ωm = ω−2ωd ≈ 0.0359).
Even small B(2) can give a large contribution in the next order since the considered term can
be very close to the resonance. Our perturbation scheme breaks down. If ω = 2ωd , we
could apply so-called cancellation of the resonance term method [18]. This method leads to
the change in oscillation frequency. The most interesting question however is how big the
amplitude Ad can be. We neglected some terms which are important to solve this problem.
First of all we have presented only the solution in O(A3) order and the perturbation scheme
cannot give the answer for large amplitude. We also neglected the cubic term and of course
the field η which is radiation escaping from the discrete mode. We do not know how small
A should be around the resonance frequency so that the oscillating mode amplitude would
remain small during the whole evolution.

Let us now focus on the equation for ω = 2ωd . We could choose any frequency but for
simplicity we choose this one (this is also the resonance case). Although we can find the
precise values of the coefficients α(k) and β(k) for k = 2

√
2 for this particular model, we

think it is better to examine the whole equation for any set of coefficients. For different models
(different U(φ)), there should be different values (α, β and γ ) but the structure of the equation
remains the same. First, we simplify the equation in order to get rid of too many parameters.
We introduce 



w = ω2
d

γ
Ad

τ = ωdt

g1 = β

ω2
d

A

g2 = αγ

ω4
d

A2

(22)

and our equation takes the form

ẅ + w + w2 + g1w cos 2τ + g2(1 + cos 4τ) = 0, (23)

where˙denotes d/dτ . Numerical simulations of the above equation suggest that the solutions
can be divided into three groups (due to the initial conditions and values of g1 and g2). In
the first group, the solutions oscillate around some level w0 with frequencies 1, 2, . . . and are
modulated with a very small frequency. The solutions have sometimes quite large amplitude,
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Figure 9. Solution of equation (23) for g1 = 0.2, g2 = 0.03 and initial conditions w(0) = 0 and
ẇ(0) = 0. Low frequency modulation with large amplitude.
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Figure 10. Solution of equation (23) for g1 = 0.1, g2 = 0.03 and w(0) = 0 and ẇ(0) = 0. High
frequency modulation with small amplitude.

and the maximum is well above 0 (figure 9). Note that contrary to the field theory case
(figure 1) there is no damping in the solution of simplified equation.

Solutions of the second group oscillate between some minimum value and 0. The
modulation frequency can be both low and high (figure 10).

The third group of these solutions are solutions which have singularity at a certain time
τcr (figure 11).

For large modulus of w, we can neglect linear terms in w and focus on the equation

ẅ + w2 = 0. (24)

The behaviour of the solution for very large |w| is given by

w ∼ −6(τ − τcr )
−2.

Of course, one cannot extrapolate these solution exactly to our partial differential equation (1)
for obvious reasons. First of all the amplitude in a field theory cannot grow unlimited, but in
this case pairs of soliton and antisoliton are created. This process can also happen when the
amplitude is large enough so that Ad crosses below − 3π

2 .
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Figure 11. Solution of equation (23) for g1 = 0.9, g2 = 0.03 and w(0) = 0 and ẇ(0) = 0.
Singularity around t = 57.

Figure 12. Stable and unstable (dark) solutions on a plane (g1, g2) with initial conditions w(0) = 0
and ẇ(0) = 0.

There is also one more interesting observation according to this simplified equation. The
boundary between regular and singular solutions on a plane g1, g2 has a very complicated,
presumably fractal, shape (figure 12). The same feature possesses the border between regular
and singular solutions in a phase space of initial conditions with fixed g1 and g2 (figure 13).
In fact, it is not surprising. Equation (12) possesses an invariance under discrete translation
in time t → t + T , where T = 2π

ω
. If we knew the map in phase space F : (Ad(t), Ȧd(t)) →

(Ad(t +T ), Ȧd(t +T )), we could just iterate Fn and find out whether for n → ∞ the solutions
are singular or not. The same procedure one usually applies in order to obtain a Julia’s or
Mandelbrot’s sets, some of which are one of the most known fractals.

As a final result, we present figure 14 which shows the minima of the solutions of the
simplified equation (12). Dark regions as usual represent the unstable solutions which certainly
cross the level of − 3π

2 . For those conditions, we expect a pair of kink and antikink is produced.
After comparing these results with the results obtained for full partial differential equation

(figure 5 and 7), we can see that there are discrepancies but the theoretical boundary lies not
very far away from the true boundaries. We can see that again the picture reveals the fractal
structure (dc = 1.60 ± 0.03, figure 15). The fractal dimension in this case is little smaller
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Figure 13. Stable and unstable solutions on a plane (w0, ẇ0) for fixed g1 = 0.5 and g2 = 0.12.

Figure 14. Minima of the solutions of the simplified equation in a plane of amplitude and frequency.
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Figure 15. Dependence ln nb upon ln 1/l. The slope of the fitted line is 1.60 ± 0.03.

than in the two previous cases. Since we have taken only second-order simplified equation
and neglected the escaping radiation, the 10% accuracy seems to be satisfying.

It is actually easy to explain if we consider the energy which is radiated from the
oscillational mode. In the theoretical picture, we neglected this radiation. Of course, we
also did not include the cubic term and we neglected the orthogonal modes, but even in that
oversimplified picture it is clear that there is a similarity.
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There is also one more interesting thing. Both in [8] and [11], the simplified theories
which were based upon collective coordinates method reproduced the fractal structure which
was wider than in field theory. In our case, we used the projection onto the internal mode
of the soliton and our approach gave the structure which was much more narrow than in the
partial differential equation.

4. Numerical methods

We have used the simplest possible discretization method for solving the full PDE (1):

φi
j = φ(tj = jλh, xi = hi), (25)

where h = L/N is a size of the spatial grid spacing (L is the size of box, N is the number of
grid points) and λh is the time step size and λ < 1, usually 0.1. The discretized spatial and
time derivatives have the form

∂2

∂x2
φi

j = φi+1
j + φi−1

j − 2φi
j

h2
, (26)

∂2

∂t2
φi

j = φi
j+1 + φi

j−1 − 2φi
j

λ2h2
, (27)

and hence one can easily find the form for the field value in one time step:

φi
j+1 = 2φi

j − φi
j−1 + λ2

(
φi+1

j + φi−1
j − 2φi

j

)
+ λ2h2U ′(φi

j

)
. (28)

Our problem required only asymmetric solutions so we could limit only to the box 0 � x � L.
As we said in section 3 we had used two sets of initial and boundary conditions. The first one
simulated the source switching far away from the kink:

φi
0 = φi

1 = φs(ih), (29)

φ0
j = 0, (30)

φN
j = 1

2A sin ωλhj. (31)

In this particular problem, j must have been smaller than 3N/λ so that the waves could travel
from the source (N/λ) go back to the boundary (again N/λ) and have no time to come back
and interact with the kink again (less than N/λ).

The second set of conditions simulated the situation when the kink is put in standing
wave:

φi
0 = φs(ih) + hk(ih), (32)

φi
1 = φs(ih) + hk(ih) cos ωλh, (33)

φ0
j = 0, (34)

φN
j = φs(Nh) + hk(Nh) cos ωλjh. (35)

In this case, we do not need to wait until the wave comes from the source so j must be less
than 2N/λ.

In order to find the best size h, which must compromise between reasonable calculation
time and reliable precision, we have ran a few tests. By simply comparing the solutions for
some h, 1

2h and 1
4h, we found that even for h = 0.05 the discretizations h, 1

2h and 1
4h gave

the same time for the first creation with accuracy hλ. Unfortunately, during the creation the
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system undergoes a very drastic change and the solutions after the creation differed. It did not
matter to our problem, although it would be very interesting to find a similar fractal structure
for further creations. After all we decided to use h = 0.025 and compare the results with
h = 0.0125 and they all matched (for the first creation).

We also tested the method described above for linearized equation (5) where we expect
that a travelling wave will not have any reflections. In fact, the numerical discretization gives
reflection which is less than 20h2.

We simply used fourth-degree Runge–Kutta method with the time step 0.001 to solve the
ODE (23) in the simplified model.

5. Conclusions and discussion

In the present paper, we have presented the evolution of a kink with an external perturbation
(radiation) in φ4 theory. We found that during the evolution an oscillating mode is being
excited. We measured the excitation using numerical methods for two sets of initial and
boundary conditions. Depending on the frequency of the radiation and its amplitude, the
excitation of the oscillational mode can remain small enough to be treated only as a deformation
of the kink or can grow and finally can effect in a production of kink and antikink which
are radiated into the spatial infinity. We tried to explain this process using a simplified
method by projecting our field theory equation onto the oscillational mode. The obtained
equation is a nonlinear ordinary equation which we cannot solve analytically, but we may
study it numerically or using perturbation methods. This equation possesses very rich space
of solutions. Some of them are regular ones and some of them are singular. The border
between those types of solutions is a very complicated both in a space of parameters and
initial conditions. The solutions of the simplified equation are relatively good approximations
of the solutions of the whole partial equation. The most interesting case of the creation of
kink–antikink pair also reveals a quite well agreement between field theory and our simplified
theory.

There are still many unanswered questions. First of them is why the border in the field
theory is so complicated. We do not know how to add a damping term which we think is very
important to solve the problem. Our simplified theory does not give the answers about the
dynamics of the created defects. We do not know how much energy from the oscillational
mode is converted into the kinetic energy of kinks, how much into radiation and how much
energy remains in oscillating modes around all the defects.
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